Distribution and properties of myosin isozymes in developing avian and mammalian skeletal muscle fibers

Author:

Gauthier GF,Lowey S,Benfield PA,Hobbs AW

Abstract

Isozymes of myosin have been localized with respect to individual fibers in differentiating skeletal muscles of the rat and chicken using immunocytochemistry. The myosin light chain pattern has been analyzed in the same muscles by two-dimensional PAGE. In the muscles of both species, the response to antibodies against fast and slow adult myosin is consistent with the speed of contraction of the muscle. During early development, when speed of contraction is slow in future fast and slow muscles, all the fibers react strongly with anti-slow as well as with anti-fast myosin. As adult contractile properties are acquired, the fibers react with antibodies specific for either fast or slow myosin, but few fibers react with both antibodies. The myosin light chain pattern slow shows a change with development: the initial light chains (LC) are principally of the fast type, LC1(f), and LC2(f), independent of whether the embryonic muscle is destined to become a fast or a slow muscle in the adult. The LC3(f), light chain does not appear in significant amounts until after birth, in agreement with earlier reports. The predominance of fast light chains during early stages of development is especially evident in the rat soleus and chicken ALD, both slow muscles, in which LC1(f), is gradually replaced by the slow light chain, LC1(s), as development proceeds. Other features of the light chain pattern include an "embryonic" light chain in fetal and neonatal muscles of the rat, as originally demonstrated by R.G. Whalen, G.S. Butler- Browne, and F. Gros. (1978. J. Mol. Biol. 126:415-431.); and the presence of approximately 10 percent slow light chains in embryonic pectoralis, a fast white muscle in the adult chicken. The response of differentiating muscle fibers to anti-slow myosin antibody cannot, however, be ascribed solely to the presence of slow light chains, since antibody specific for the slow heavy chain continues to react with all the fibers. We conclude that during early development, the myosin consists of a population of molecules in which the heavy chain can be associated with a fast, slow, or embryonic light chain. Biochemical analysis has shown that this embryonic heavy chain (or chains) is distinct from adult fast or slow myosin (R.G. Whalen, K. Schwartz, P. Bouveret, S.M. Sell, and F. Gros. 1979. Proc. Natl. Acad. Sci. U.S.A. 76:5197-5201. J.I. Rushbrook, and A. Stracher. 1979. Proc Natl. Acad. Sci. U.S.A. 76:4331-4334. P.A. Benfield, S. Lowey, and D.D. LeBlanc. 1981. Biophys. J. 33(2, Pt. 2):243a[Abstr.]). Embryonic myosin, therefore, constitutes a unique class of molecules, whose synthesis ceases before the muscle differentiates into an adult pattern of fiber types.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3