Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis

Author:

Sumigray Kaelyn D.1,Chen Hsin1,Lechler Terry1

Affiliation:

1. Department of Cell Biology, Duke University Medical Center, Durham, NC 27710

Abstract

Desmosomes are cell–cell adhesion structures that integrate cytoskeletal networks. In addition to binding intermediate filaments, the desmosomal protein desmoplakin (DP) regulates microtubule reorganization in the epidermis. In this paper, we identify a specific subset of centrosomal proteins that are recruited to the cell cortex by DP upon epidermal differentiation. These include Lis1 and Ndel1, which are centrosomal proteins that regulate microtubule organization and anchoring in other cell types. This recruitment was mediated by a region of DP specific to a single isoform, DPI. Furthermore, we demonstrate that the epidermal-specific loss of Lis1 results in dramatic defects in microtubule reorganization. Lis1 ablation also causes desmosomal defects, characterized by decreased levels of desmosomal components, decreased attachment of keratin filaments, and increased turnover of desmosomal proteins at the cell cortex. This contributes to loss of epidermal barrier activity, resulting in completely penetrant perinatal lethality. This work reveals essential desmosome-associated components that control cortical microtubule organization and unexpected roles for centrosomal proteins in epidermal function.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3