THE ORGANIC-INORGANIC RELATIONSHIP IN CALCIFIED MITOCHONDRIA

Author:

Bonucci E.1,Derenzini M.1,Marinozzi V.1

Affiliation:

1. From the 1° Istituto di Anatomia Patologica, Università di Roma, Policlinico Umberto 1°, Rome 00161 Italy

Abstract

Experimentally induced calcification within mitochondria has been studied electron rnicroscopically. Cells investigated comprise hepatic cells damaged by CCl4 intoxication, myocardial cells damaged by prolonged dihydrotachysterol (DHT) administration, and cells from skeletal muscle (gastrocnemius) damaged by DHT sensibilization and local injury. Cells from a human bowel carcinoma were studied too. Two types of intramitochondrial inorganic inclusion have been found. The first consists of clusters of apatite-like, needle-shaped crystals (crystalline aggregates), the second of clusters of very fine granules (granular aggregates). The former have been found mainly in mitochondria in apparently normal myocardial and muscular cells, the latter in mitochondria of degenerated hepatic, neoplastic, and myocardial cells. Crystalline aggregates are closely related to the membranes of cristae at first, but they later spread to occupy the whole mitochondrial matrix. Granular aggregates are initially found in the mitochondrial matrix near, but perhaps not touching, cristae; by growing they come into close contact with cristal membranes. Both types of aggregate show intrinsic electron opacity, which disappears after formic acid decalcification. Only the crystalline aggregates give an electron diffraction pattern of crystallinity. Uranium and lead staining of decalcified sections shows that both types of aggregate are intimately connected with an organic substrate. The substrate of crystalline aggregates consists of very thin, elongated structures shaped like the inorganic crystals. The substrate of granular aggregates consists of amorphous material gathered in clusters, with the same roundish shape and intercristal position as the inorganic granules. Both types of substrate are stained by phosphotungstic acid at low pH and by silver nitrate-methenamine after periodic acid oxidation. These results show that the organic content of the substrates includes glycoproteins; they have been confirmed by the periodic acid-Schiff (PAS) method under the optical microscope. These findings have been discussed in relation to the recent discovery of organic Ca2+-binding sites in mitochondria and to the general problems of soft tissue calcification.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3