STUDIES ON THE MICROTUBULES IN HELIOZOA

Author:

Tilney Lewis G.1,Porter Keith R.1

Affiliation:

1. From the Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138

Abstract

When specimens of Actinosphaerium nucleofilum are placed at 4°C, the axopodia retract and the birefringent core (axoneme) of each axopodium disappears. In fixed specimens, it has been shown that this structure consists of a highly patterned bundle of microtubules, each 220 A in diameter; during cold treatment these microtubules disappear and do not reform until the organisms are removed to room temperature. Within a few minutes after returning the specimens to room temperature, the axonemes reappear and the axopodia begin to reform reaching normal length 30–45 min later. In thin sections of cells fixed during the early stages of this recovery period, microtubules, organized in the pattern of the untreated specimens, are found in each reforming axopodium. Reforming axopodia without birefringent axonemes (and thus without microtubules) are never encountered. From these observations we conclude that the microtubules may be instrumental not only in the maintenance of the axopodia but also in their growth. Thus, if the microtubules are destroyed, the axopodia should retract and not reform until these tubular units are reassembled. During the cold treatment short segments of a 340-A tubule appeared; when the organisms were removed from the cold, these tubular segments disappeared. It seems probable that they are one of the disintegration products of the microtubules. A model is presented of our interpretation of how a 220-A microtubule transforms into a 340-A tubule and what this means in terms of the substructure of the untreated microtubules.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3