THE MICROFIBRILLAR STRUCTURE OF THE CELL WALLS OF THE FILAMENTOUS FUNGUS, Allomyces

Author:

Aronson Jerome M.1,Preston R. D.1

Affiliation:

1. From the Department of Botany, University of Leeds, England.

Abstract

Cell walls of the fungus, Allomyces, were isolated by chemical procedures, using either potassium permanganate oxidation or glacial acetic acid-hydrogen peroxide treatment followed by dilute mineral acid. The structure of the treated walls was investigated by means of electron microscopy and electron diffraction analysis which showed that rhizoidal walls were especially suitable for observation. Chitin microfibrils exist in the extreme tips of rhizoidal walls, and tend to lie in a preferred longitudinal orientation. Older rhizoidal wall segments show a crossed fibrillar structure under a thin layer of short randomly arranged microfibrils. In the possession of systems of crossed fibrils these walls are like the cell walls of certain green algae. Walls of branch rhizoidal filaments were observed in the early stages of development, in which case the observed microfibrillar orientations are such that it is possible to envisage their origin from pre-existing fibrils that have passively reoriented. With respect to the continued growth of the filaments, however, it is difficult to explain the observed microfibrillar arrangements in terms of the "multi-net" theory. Hyphal walls usually show two layers, the outer consisting of microfibrils arranged randomly, and the inner consisting of well oriented microfibrils running parallel with the longitudinal axis of the hypha. The oriented inner layer appears to be similar in structure to the secondary wall of the Phycomyces sporangiophore.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cell surface display of proteins on filamentous fungi;Applied Microbiology and Biotechnology;2019-07-29

2. Biology of Handedness in Fungi;Asymmetry in Plants;2019-03-25

3. Heterologous expression of an active chitin synthase from Rhizopus oryzae;Fungal Genetics and Biology;2016-12

4. Structure of the fungal cell wall;Fungal Cell Wall;2012-03-29

5. Cell wall composition;Fungal Cell Wall;2012-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3