The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone

Author:

Williams Christopher C.1,Allison June G.2,Vidal Gregory A.3,Burow Matthew E.4,Beckman Barbara S.5,Marrero Luis6,Jones Frank E.1

Affiliation:

1. Department of Biochemistry, Tulane University Health Sciences Center, Tulane Cancer Center

2. Northshore High School, Saint Tammany School Board, Slidell, LA 70461

3. Department of Structural and Cellular Biology, Tulane University Health Sciences Center, Tulane Cancer Center

4. Department of Medicine, Tulane University Health Sciences Center, Tulane Cancer Center

5. Department of Pharmacology, Tulane University Health Sciences Center, Tulane Cancer Center

6. Louisiana State University Health Sciences Center, Gene Therapy Program, The Morphology and Imaging Core Laboratory, New Orleans, LA 70112

Abstract

In the lactating breast, ERBB4 localizes to the nuclei of secretory epithelium while regulating activities of the signal transducer and activator of transcription (STAT) 5A transcription factor essential for milk-gene expression. We have identified an intrinsic ERBB4 NLS (residues 676–684) within the ERBB4 intracellular domain (4ICD) that is essential for nuclear accumulation of 4ICD. To determine the functional significance of 4ICD nuclear translocation in a physiologically relevant system, we have demonstrated that cotransfection of ERBB4 and STAT5A in a human breast cancer cell line stimulates β-casein promoter activity. Significantly, nuclear localization of STAT5A and subsequent stimulation of the β-casein promoter requires nuclear translocation of 4ICD. Moreover, 4ICD and STAT5A colocalize within nuclei of heregulin β1 (HRG)-stimulated cells and both proteins bind to the endogenous β-casein promoter in T47D breast cancer cells. Together, our results establish a novel molecular mechanism of transmembrane receptor signal transduction involving nuclear cotranslocation of the receptor intracellular domain and associated transcription factor. Subsequent binding of the two proteins at transcription factor target promoters results in activation of gene expression.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3