Esophageal muscle physiology and morphogenesis require assembly of a collagen XIX–rich basement membrane zone

Author:

Sumiyoshi Hideaki12,Mor Niv1,Lee Sui Y.1,Doty Stephen1,Henderson Scott3,Tanaka Shizuko1,Yoshioka Hidekatsu2,Rattan Satish4,Ramirez Francesco1

Affiliation:

1. Research Division of the Hospital for Special Surgery and Department of Physiology and Biophysics at the Weill College of Medicine of Cornell University, New York, NY 10019

2. Department of Anatomy, Biology, and Medicine, Oita Medical University, Oita 879-5593, Japan

3. Department of Molecular, Cellular, and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029

4. Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107

Abstract

Collagen XIX is an extremely rare extracellular matrix component that localizes to basement membrane zones and is transiently expressed by differentiating muscle cells. Characterization of mice harboring null and structural mutations of the collagen XIX (Col19a1) gene has revealed the critical contribution of this matrix protein to muscle physiology and differentiation. The phenotype includes smooth muscle motor dysfunction and hypertensive sphincter resulting from impaired swallowing-induced, nitric oxide–dependent relaxation of the sphincteric muscle. Muscle dysfunction was correlated with a disorganized matrix and a normal complement of enteric neurons and interstitial cells of Cajal. Mice without collagen XIX exhibit an additional defect, namely impaired smooth-to-skeletal muscle cell conversion in the abdominal segment of the esophagus. This developmental abnormality was accounted for by failed activation of myogenic regulatory factors that normally drive esophageal muscle transdifferentiation. Therefore, these findings identify collagen XIX as the first structural determinant of sphincteric muscle function, and as the first extrinsic factor of skeletal myogenesis in the murine esophagus.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3