Affiliation:
1. Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
Abstract
β-Catenin plays essential roles in both cell–cell adhesion and Wnt signal transduction, but what precisely controls β-catenin targeting to cadherin adhesive complexes, or T-cell factor (TCF)-transcriptional complexes is less well understood. We show that during Wnt signaling, a form of β-catenin is generated that binds TCF but not the cadherin cytoplasmic domain. The Wnt-stimulated, TCF-selective form is monomeric and is regulated by the COOH terminus of β-catenin, which selectively competes cadherin binding through an intramolecular fold-back mechanism. Phosphorylation of the cadherin reverses the TCF binding selectivity, suggesting another potential layer of regulation. In contrast, the main cadherin-binding form of β-catenin is a β-catenin–α-catenin dimer, indicating that there is a distinct molecular form of β-catenin that can interact with both the cadherin and α-catenin. We propose that participation of β-catenin in adhesion or Wnt signaling is dictated by the regulation of distinct molecular forms of β-catenin with different binding properties, rather than simple competition between cadherins and TCFs for a single constitutive form. This model explains how cells can control whether β-catenin is used independently in cell adhesion and nuclear signaling, or competitively so that the two processes are coordinated and interrelated.
Publisher
Rockefeller University Press
Cited by
282 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献