VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites

Author:

Kumar Nikit1ORCID,Leonzino Marianna12345,Hancock-Cerutti William12345,Horenkamp Florian A.1,Li PeiQi1,Lees Joshua A.1ORCID,Wheeler Heather12345,Reinisch Karin M.1ORCID,De Camilli Pietro12345ORCID

Affiliation:

1. Department of Cell Biology, Yale University School of Medicine, New Haven, CT

2. Department of Neuroscience, Yale University School of Medicine, New Haven, CT

3. Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT

4. Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT

5. Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT

Abstract

Mutations in the human VPS13 genes are responsible for neurodevelopmental and neurodegenerative disorders including chorea acanthocytosis (VPS13A) and Parkinson’s disease (VPS13C). The mechanisms of these diseases are unknown. Genetic studies in yeast hinted that Vps13 may have a role in lipid exchange between organelles. In this study, we show that the N-terminal portion of VPS13 is tubular, with a hydrophobic cavity that can solubilize and transport glycerolipids between membranes. We also show that human VPS13A and VPS13C bind to the ER, tethering it to mitochondria (VPS13A), to late endosome/lysosomes (VPS13C), and to lipid droplets (both VPS13A and VPS13C). These findings identify VPS13 as a lipid transporter between the ER and other organelles, implicating defects in membrane lipid homeostasis in neurological disorders resulting from their mutations. Sequence and secondary structure similarity between the N-terminal portions of Vps13 and other proteins such as the autophagy protein ATG2 suggest lipid transport roles for these proteins as well.

Funder

National Institutes of Health

Michael J. Fox Foundation for Parkinson’s Research

Kavli Foundation

National Science Foundation

Cornell University

National Institute of General Medical Sciences

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3