Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism

Author:

Yellen Gary1ORCID

Affiliation:

1. Department of Neurobiology, Harvard Medical School, Boston, MA

Abstract

The brain’s energy demands are remarkable both in their intensity and in their moment-to-moment dynamic range. This perspective considers the evidence for Warburg-like aerobic glycolysis during the transient metabolic response of the brain to acute activation, and it particularly addresses the cellular mechanisms that underlie this metabolic response. The temporary uncoupling between glycolysis and oxidative phosphorylation led to the proposal of an astrocyte-to-neuron lactate shuttle whereby during stimulation, lactate produced by increased glycolysis in astrocytes is taken up by neurons as their primary energy source. However, direct evidence for this idea is lacking, and evidence rather supports that neurons have the capacity to increase their own glycolysis in response to stimulation; furthermore, neurons may export rather than import lactate in response to stimulation. The possible cellular mechanisms for invoking metabolic resupply of energy in neurons are also discussed, in particular the roles of feedback signaling via adenosine diphosphate and feedforward signaling by calcium ions.

Funder

National Institutes of Health

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3