Dictyostelium discoideum cells lacking the 34,000-dalton actin-binding protein can grow, locomote, and develop, but exhibit defects in regulation of cell structure and movement: a case of partial redundancy.

Author:

Rivero F1,Furukawa R1,Noegel A A1,Fechheimer M1

Affiliation:

1. Max-Planck-Institute for Biochemistry, Martinsried, Germany.

Abstract

Cells lacking the Dictyostelium 34,000-D actin-bundling protein, a calcium-regulated actin cross-linking protein, were created to probe the function of this polypeptide in living cells. Gene replacement vectors were constructed by inserting either the UMP synthase or hygromycin resistance cassette into cloned 4-kb genomic DNA containing sequences encoding the 34-kD protein. After transformation and growth under appropriate selection, cells lacking the protein were analyzed by PCR analyses on genomic DNA, Northern blotting, and Western blotting. Cells lacking the 34-kD protein were obtained in strains derived from AX2 and AX3. Growth, pinocytosis, morphogenesis, and expression of developmentally regulated genes is normal in cells lacking the 34-kD protein. In chemotaxis studies, 34-kD- cells were able to locomote and orient normally, but showed an increased persistence of motility. The 34-kD- cells also lost bits of cytoplasm during locomotion. The 34-kD- cells exhibited either an excessive number of long and branched filopodia, or a decrease in filopodial length and an increase in the total number of filopodia per cell depending on the strain. Reexpression of the 34-kD protein in the AX2-derived strain led to a "rescue" of the defect in the persistence of motility and of the excess numbers of long and branched filopodia, demonstrating that these defects result from the absence of the 34-kD protein. We explain the results through a model of partial functional redundancy. Numerous other actin cross-linking proteins in Dictyostelium may be able to substitute for some functions of the 34-kD protein in the 34-kD cells. The observed phenotype is presumed to result from functions that cannot be adequately supplanted by a substitution of another actin cross-linking protein. We conclude that the 34-kD actin-bundling protein is not essential for growth, but plays an important role in dynamic control of cell shape and cytoplasmic structure.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3