Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion.

Author:

Islam S1,Carey T E1,Wolf G T1,Wheelock M J1,Johnson K R1

Affiliation:

1. Department of Biology, University of Toledo, Ohio 43606, USA.

Abstract

E-cadherin is a transmembrane glycoprotein that mediates calcium-dependent, homotypic cell-cell adhesion and plays an important role in maintaining the normal phenotype of epithelial cells. Disruption of E-cadherin activity in epithelial cells correlates with formation of metastatic tumors. Decreased adhesive function may be implemented in a number of ways including: (a) decreased expression of E-cadherin; (b) mutations in the gene encoding E-cadherin; or (c) mutations in the genes that encode the catenins, proteins that link the cadherins to the cytoskeleton and are essential for cadherin mediated cell-cell adhesion. In this study, we explored the possibility that inappropriate expression of a nonepithelial cadherin by an epithelial cell might also result in disruption of cell-cell adhesion. We showed that a squamous cell carcinoma-derived cell line expressed N-cadherin and displayed a scattered fibroblastic phenotype along with decreased expression of E- and P-cadherin. Transfection of this cell line with antisense N-cadherin resulted in reversion to a normal-appearing squamous epithelial cell with increased E- and P-cadherin expression. In addition, transfection of a normal-appearing squamous epithelial cell line with N-cadherin resulted in downregulation of both E- and P-cadherin and a scattered fibroblastic phenotype. In all cases, the levels of expression of N-cadherin and E-cadherin were inversely related to one another. In addition, we showed that some squamous cell carcinomas expressed N-cadherin in situ and those tumors expressing N-cadherin were invasive. These studies led us to propose a novel mechanism for tumorigenesis in squamous epithelial cells; i.e., inadvertent expression of a nonepithelial cadherin.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 282 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3