The production of post-Golgi vesicles requires a protein kinase C-like molecule, but not its phosphorylating activity.

Author:

Simon J P1,Ivanov I E1,Adesnik M1,Sabatini D D1

Affiliation:

1. Department of Cell Biology, New York University School of Medicine, New York 10016, USA.

Abstract

We have recently described a system that recreates in vitro the generation of post-Golgi vesicles from purified Golgi fractions obtained from virus-infected MDCK cells in which the vesicular stomatitis virus-G envelope glycoprotein had been allowed to accumulate in vivo in the TGN. Vesicle formation, monitored by the release of the viral glycoprotein, was shown to require the activation of a GTP-binding ADP ribosylation factor (ARF) protein that promotes the assembly of a vesicle coat in the TGN, and to be regulated by a Golgi-associated protein kinase C (PKC)-like activity. We have now been able to dissect the process of post-Golgi vesicle generation into two sequential stages, one of coat assembly and bud formation, and another of vesicle scission, neither of which requires an ATP supply. The first stage can occur at 20 degrees C, and includes the GTP-dependent activation of the ARF protein, which can be effected by the nonhydrolyzable nucleotide analogue GTP gamma S, whereas the second stage is nucleotide independent and can only occur at a higher temperature of incubation. Cytosolic proteins are required for the vesicle scission step and they cannot be replaced by palmitoyl CoA, which is known to promote, by itself, scission of the coatomer-coated vesicles that mediate intra-Golgi transport. We have found that PKC inhibitors prevented vesicle generation, even when this was sustained by GTP gamma S and ATP levels reduced far below the K(m) of PKC. The inhibitors suppressed vesicle scission without preventing coat assembly, yet to exert their effect, they had to be added before coat assembly took place. This indicates that a target of the putative PKC is activated during the bud assembly stage of vesicle formation, but only acts during the phase of vesicle release. The behavior of the PKC target during vesicle formation resembles that of phospholipase D (PLD), a Golgi-associated enzyme that has been shown to be activated by PKC, even in the absence of the latter's phosphorylating activity. We therefore propose that during coat assembly, PKC activates a PLD that, during the incubation at 37 degrees C, promotes vesicle scission by remodeling the phospholipid bilayer and severing connections between the vesicles and the donor membrane.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3