THE ROLE OF MICROTUBULES IN THE MOVEMENT OF PIGMENT GRANULES IN TELEOST MELANOPHORES

Author:

Murphy Douglas B.1,Tilney Lewis G.1

Affiliation:

1. From the Department of Biology, University of Pennsylvania. Philadelphia, Pennsylvania 19174.

Abstract

When microtubules in teleost melanophores are disrupted with antimitotic agents, colchicine, high hydrostatic pressure, low temperature, and vinblastine, the alignment and movement of the pigment granules in these cells disappear; during recovery, the return of alignment and movement corresponds in both time and space with the repolymerization of microtubules. Furthermore, analysis of nearest neighbor distances in untreated melanophores reveals that pigment granules are closely associated with microtubules. Other structures such as microfilaments, the endoplasmic reticulum, and the cytoplasmic matrix do not appear to be involved. Thus we conclude that microtubules determine the alignment and are essential for the selective movements of the pigment granules in these cells. Investigations of the mechanism of movement show that microtubules are required for both centrifugal and centripetal migrations and that they do not change in number or location during redistribution of pigment. Our results further indicate that microtubules in melanophores behave as semistable organelles as determined by investigation with colchicine and hydrostatic pressure. These observations and others rule out a push-pull mechanism based on the polymerization and depolymerization of microtubules or one which distinguishes two operationally different sets of microtubules. We propose instead that particles move by sliding along a fixed array of microtubules.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3