Distribution of immunoglobulin G receptors in the small intestine of the young rat.

Author:

Rodewald R

Abstract

Conjugates of horseradish peroxidase (HRP) and immunoglobulin G (IgG) were used to map the distribution of cell surface receptors that can bind IgG at 0 degrees C within the small intestine of 10-12-d-old rats. Luminal receptors are present only within the duodenum and proximal jejunum. In these locations, receptors are limited to absorptive cells that line the upper portion of individual villi. Near villus tips, receptors are relatively evenly distributed over the entire luminal plasmalemma. In the midregion of villi, receptors are unevenly distributed over the luminal surface. Receptors (a) specifically bind rat and rabbit IgG, (b) recognize the Fc portion of the immunoglobulins, and (c) bind at pH 6.0 but not pH 7.4. To determine whether IgG receptors are confined to the luminal portion of the plasmalemma, intact epithelial cells were isolated from the proximal intestine of 10-12-d-old rats and incubated with HRP conjugates at 0 degree C. The specific binding of rat IgG-HRP to cells at pH 6.0 indicates that IgG receptors, which are functionally similar to those found on the luminal surface, are also present over the entire abluminal surface of absorptive cells. These results are consistent with the transport of IgG to the abluminal plasma membrane in the form of IgG-receptor complexes on the surface of vesicles. Exposure of these complexes to the serosal plasma, which is presumably at pH 7.4, would cause release of IgG from the receptors. To assess possible inward movement of vesicles from the abluminal surface after discharge of IgG, intravenously injected HRP was used as a space-filling tracer in the serosal plasma. HRP could be visualized within the coated and tubular vesicles responsible for transport of IgG in the opposite direction. These vesicles may, therefore, provide a pathway whereby receptors shuttle between the luminal and abluminal surfaces of cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3