Cell cycle phase expansion in nitrogen-limited cultures of Saccharomyces cerevisiae.

Author:

Rivin C J,Fangman W L

Abstract

The time and coordination of cell cycle events were examined in the budding yeast Saccharomyces cerevisiae. Whole-cell autoradiographic techniques and time-lapse photography were used to measure the duration of the S, G1, and G2 phases, and the cell cycle positions of "start" and bud emergence, in cells whose growth rates were determined by the source of nitrogen. It was observed that the G1, S, and G2 phases underwent a proportional expansion with increasing cell cycle length, with the S phase occupying the middle half of the cell cycle. In each growth condition, start appeared to correspond to the G1 phase/S phase boundary. Bud emergence did not occur until mid S phase. These results show that the rate of transit through all phases of the cell cycle can vary considerably when cell cycle length changes. When cells growing at different rates were arrested in G1, the following synchronous S phase were of the duration expected from the length of S in each asynchronous population. Cells transferred from a poor nitrogen source to a good one after arrest in G1 went through the subsequent S phase at a rate characteristic of the better medium, indicating that cells are not committed in G1 to an S phase of a particular duration.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3