Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality.

Author:

Wolosewick J J,Porter K R

Abstract

The cytoplasmic ground substance of cultured cells prepared for high voltage transmission electron microscopy (glutaraldehyde/osmium fixed, alcohol or acetone dehydrated, critical-point dried) consists of slender (3-6 nm Diam) strands--the microtrabeculae (55)--that form an irregular three-dimensional lattice (the microtrabecular lattice). The microtrabeculae interconnect the membranous and nonmembranous organelles and are confluent with the cortices of the cytoplast. The lattice is found in all portions of the cytoplast of all cultured cells examined. The possibility that the lattice structure is an artifact of specimen preparation has been tested by (a) subjecting whole cultured cells (WI-38, NRK, chick embryo fibroblasts) to various chemical (aldehydes, osmium tetroxide) and nonchemical (freezing) fixation schedules, (b) examination of model systems (erythrocytes, protein solutions), (c) substantiating the relaibility of critical-point drying, and (d) comparing images of whole cells with conventionally prepared (plastic-embedded) cells. The lattice structure is preserved by chemical and nonchemical fixation, though alterations in ultrastructure can occur especially after prolonged exposure to osmium tetroxide. The critical-point method for drying specimens appears to be reliable as is the freeze-drying method. The discrepancies between images of plastic-embedded and sectioned cells, and images of whole, critical-point dried cells appear to be related, in part, to the electron-scattering properties of the embedding resin. The described observations indicate that the microtrabecular lattice seen in electron micrographs closely represents the nonrandom structure of the cytoplasmic ground substance of living cultured cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 508 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3