CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE

Author:

Schmidt Susan Y.1,Lolley Richard N.1

Affiliation:

1. From the Department of Anatomy, University of California School of Medicine at Los Angeles, California 90024, and the Developmental Neurology Laboratory, Veterans Administration Hospital, Sepulveda, California 91343

Abstract

Cyclic nucleotides have been implicated in the differentiation and function of the vertebrate retina. In the normal retina of DBA mice, the specific activity of cyclic-nucleotide phosphodiesterase (PDE), with cyclic-AMP as the substrate (cAMP-PDE), increases eightfold between the 6th and 20th postnatal day. Kinetic analysis of retinae from newborn mice reveals a PDE with a single Michaelis constant (Km) value for cyclic-AMP (low Km-PDE). After the 6th postnatal day, a second PDE with a high Km for cyclic-AMP (high Km-PDE) can be demonstrated. The appearance and increasing activity of the high Km-PDE coincides with the differentiation and growth of photoreceptor outer segments. Additionally, the high Km-PDE is shown by microchemical techniques to be concentrated in the photoreceptor cell layer and the low Km-PDE within the inner layers of the normal retina. In C3H mice afflicted with an inherited degeneration of the photoreceptor layer, the postnatal increase in the specific activity of cAMP-PDE is substantially lower than in the normal retina. The postnatal increase in the specific activity of cAMP-PDE in two regions of the brain of C3H mice is the same as in the normal strain. A deficiency in high Km-PDE activity in the C3H retina is evident on the 7th postnatal day, when the activity of low Km-PDE, photoreceptor morphology, and rhodopsin content of these retina are essentially normal. In the adult C3H retina, the PDE activity with cyclic-GMP and cyclic-UMP as substrates is significantly below that of the normal retina. These data indicate that an alteration in cyclic-AMP metabolism occurs before photoreceptor cell degeneration in the retinae of C3H mice.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3