PERMEABILITY OF THE OVARIAN FOLLICLE OF AEDES AEGYPTI MOSQUITOES

Author:

Anderson Winston A.1,Spielman Andrew1

Affiliation:

1. From the Department of Anatomy and Laboratory of Human Reproduction and Reproductive Biology, Harvard Medical School, Boston, Massachusetts 02115, the Department of Anatomy, The University of Chicago, Chicago, Illinois 60637, and the Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts 02115

Abstract

The passage of tracers of various molecular weights into resting and vitellogenic ovarian follicles of Aedes aegypti mosquitoes was studied ultrastructurally. The outermost layer of the follicular sheath (the basement lamina) is a coarse mechanical filter. It is freely permeable to particles with molecular weights ranging from 12,000 to 500,000 (i.e. cytochrome c, peroxidase, hemoglobin, catalase, ferritin, immunoglobulin (IgG)-peroxidase, iron dextran and Thorotrast) that have dimensions less than 110 A. Molecules as large as carbon (300–500 A) are totally excluded. Whereas proteins and polysaccharide tracers permeate the basement lamina with apparent ease, certain inert particles (e.g. Thorotrast, Fellows-Testager Div., Fellows Mfg. Co., Inc., Detroit, Mich.) penetrate more slowly. With respect to the tracers tested, resting follicles are as permeable as vitellogenic follicles. The follicle epithelium of resting or vitellogenic follicles is penetrated by narrow intercellular channels. Our observations suggest that these spaces are lined with mucopolysaccharide material. After permeating the basement lamina, exogenous tracers fill these channels, while the bulk of material accumulates in the perioocytic space. Within 3 hr after imbibing blood, the pinocytotic mechanism of the oocyte is greatly augmented. Pinocytosis is not selective with regard to material in the perioocytic space, since double tracer studies show that exogenous compounds are not separated, but are incorporated into the same pinocytotic vesicle. During later stages of vitellogenesis, 36–48 hr after the blood-meal, the pinocytotic mechanism of the oocyte is diminished. Simultaneously, the intercellular channels become occluded by desmosomes, and the vitelline membrane plaques separate the oocyte and follicle epithelium.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3