Interactions between Germ Cells and Extracellular Matrix Glycoproteins during Migration and Gonad Assembly in the Mouse Embryo

Author:

García-Castro Martín I.1,Anderson Robert1,Heasman Janet11,Wylie Christopher11

Affiliation:

1. Wellcome/CRC Institute for Developmental Biology and Cancer, Cambridge CB2 1QR, England; and Institute of Human Genetics, Department of Pediatrics, Department of Cell Biology and Neuroanatomy, University of Minnesota School of Medicine, Minneapolis, Minnesota 55455

Abstract

Cells are known to bind to individual extracellular matrix glycoproteins in a complex and poorly understood way. Overall strength of adhesion is thought to be mediated by a combinatorial mechanism, involving adhesion of a cell to a variety of binding sites on the target glycoproteins. During migration in embryos, cells must alter their overall adhesiveness to the substrate to allow locomotion. The mechanism by which this is accomplished is not well understood. During early development, the cells destined to form the gametes, the primordial germ cells (PGCs), migrate from the developing hind gut to the site where the gonad will form. We have used whole-mount immunocytochemistry to study the changing distribution of three extracellular matrix glycoproteins, collagen IV, fibronectin, and laminin, during PGC migration and correlated this with quantitative assays of adhesiveness of PGCs to each of these. We show that PGCs change their strength of adhesion to each glycoprotein differentially during these stages. Furthermore, we show that PGCs interact with a discrete tract of laminin at the end of migration. Closer analysis of the adhesion of PGCs to laminin revealed that PGCs adhere particularly strongly to the E3 domain of laminin, and blocking experiments in vitro suggest that they adhere to this domain using a cell surface proteoglycan.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3