Phospholipase D Stimulates Release of Nascent Secretory Vesicles from the trans-Golgi Network

Author:

Chen Ye-Guang1,Siddhanta Anirban1,Austin Cary D.1,Hammond Scott M.1,Sung Tsung-Chang1,Frohman Michael A.1,Morris Andrew J.1,Shields Dennis11

Affiliation:

1. Department of Developmental and Molecular Biology, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461; and Department of Pharmacology, and Institute for Cell and Molecular Biology, State University of New York, Stony Brook, New York 11794

Abstract

Phospholipase D (PLD) is a phospholipid hydrolyzing enzyme whose activation has been implicated in mediating signal transduction pathways, cell growth, and membrane trafficking in mammalian cells. Several laboratories have demonstrated that small GTP-binding proteins including ADP-ribosylation factor (ARF) can stimulate PLD activity in vitro and an ARF-activated PLD activity has been found in Golgi membranes. Since ARF-1 has also been shown to enhance release of nascent secretory vesicles from the TGN of endocrine cells, we hypothesized that this reaction occurred via PLD activation. Using a permeabilized cell system derived from growth hormone and prolactin-secreting pituitary GH3 cells, we demonstrate that immunoaffinity-purified human PLD1 stimulated nascent secretory vesicle budding from the TGN approximately twofold. In contrast, a similarly purified but enzymatically inactive mutant form of PLD1, designated Lys898Arg, had no effect on vesicle budding when added to the permeabilized cells. The release of nascent secretory vesicles from the TGN was sensitive to 1% 1-butanol, a concentration that inhibited PLD-catalyzed formation of phosphatidic acid. Furthermore, ARF-1 stimulated endogenous PLD activity in Golgi membranes approximately threefold and this activation correlated with its enhancement of vesicle budding. Our results suggest that ARF regulation of PLD activity plays an important role in the release of nascent secretory vesicles from the TGN.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 246 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3