Synaptic activity of frog retinal photoreceptors. A peroxidase uptake study.

Author:

Schacher S,Holtzman E,Hood D C

Abstract

The uptake of horseradish peroxidase (HRP) into membranous structures, detectable by light and electron microscopy, is used here to monitor the synaptic activity of photoreceptors of isolated frog retinas maintained in the dark or under various illumination conditions. The major findings are: (a) Neurotransmission from photoreceptor terminals seems to involve the same types of endocytic membrane-retrieval processes that occur at other nerve terminals. Presumably, the endocytic processes compensate for exocytic events associated with neurotransmission. The retrieved membrane is "recycled" to form vesicles. Some of these accumulate near the synaptic ribbons, perhaps indicating reutilization for exocytosis. On the other hand, some retrieved membrane evidently is degraded via multivesicular bodies that appear to undergo "retrograde" transport from the receptor synapses to the myoid regions. (b) Photoreceptor terminals take up much HRP in the dark. Steady illumination markedly decreases uptake by rods. Uptake by cones is notably reduced only at illumination intensities higher than those that have maximal effects on rods. (c) The decrease in rod HRP uptake with light is reversible when retinas are allowed to adapt to the dark, if the light exposures used were at intensities that bleach very little visual pigment. Such "recovery" is not observed after light exposures that bleach a considerable amount of visual pigment. The cones recover their dark levels of HRP uptake even after light exposures that bleach considerable amounts of visual pigment. The changes in HRP uptake that we observe parallel expectations for photoreceptor synaptic neurotransmission derived from indirect physiological evidence.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3