Pinocytosis in mouse L-fibroblasts: ultrastructural evidence for a direct membrane shuttle between the plasma membrane and the lysosomal compartment.

Author:

Van Deurs B,Nilausen K

Abstract

Mouse L-fibroblasts internalized large amounts of cationized ferritin (CF) by pinocytosis. Initially (60-90 s after addition of CF to cell monolayers at 37 degrees C), CF was found in vesicles measuring 100-400 nm (sectioned diameter) and as small clusters adhering to the inner aspect of the limiting membrane of a few large (greater than 600 nm) vacuoles. After 5-30 min, CF labeling of large vacuoles was pronounced and continuous. Moreover, 70-80% of all labeled structures were tiny (less than 100 nm) vesicles. However, the absolute frequency of tiny vesicles increased more than twofold from 5 min to 30 min. When the cells were incubated with CF for 30 min, then washed and further incubated for 3 h without CF, almost all CF was present in dense bodies (100-500 nm). When L-cells were first incubated with horseradish peroxidase (HRP), then washed and incubated with CF, double-labeled vacuoles were observed. Tiny vesicles also contained HRP-CF, and small HRP-CF patches were localized on the cell surface. Distinct labeling of stacked Golgi cisterns was not observed in any experiment. These observations suggest that the numerous tiny vesicles are not endocytic but rather pinch off from the large vacuoles and move towards the cell surface to fuse with the plasma membrane. Thus, ultrastructural evidence is provided in favor of a direct membrane shuttle between the plasma membrane and the lysosomal compartment.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3