Gene expression during ER stress–induced apoptosis in neurons

Author:

Reimertz Claus12,Kögel Donat12,Rami Abdelhaq3,Chittenden Thomas4,Prehn Jochen H.M.12

Affiliation:

1. Interdisciplinary Center for Clinical Research, University Münster Clinics, D-48149 Münster, Germany

2. Experimental Neurosurgery, Center for Neurology and Neurosurgery

3. Department of Anatomy III, Johann Wolfgang Goethe University Clinics, D-60590 Frankfurt, Germany

4. ImmunoGen, Inc., Cambridge, MA 02139

Abstract

Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of ischemic and neurodegenerative disorders. Treatment of human SH-SY5Y neuroblastoma cells with tunicamycin, an inhibitor of protein glycosylation, rapidly induced the expression of target genes of the unfolded protein response. However, prolonged treatment also triggered a delayed, caspase-dependent cell death. Microarray analysis of gene expression changes during tunicamycin-induced apoptosis revealed that the Bcl-2 homology domain 3-only family member, Bcl-2 binding component 3/p53 upregulated modulator of apoptosis (Bbc3/PUMA), was the most strongly induced pro-apoptotic gene. Expression of Bbc3/PUMA correlated with a Bcl-xL–sensitive release of cytochrome c and the activation of caspase-9 and -3. Increased expression of Bbc3/PUMA was also observed in p53-deficient human cells, in response to the ER stressor thapsigargin, and in rat hippocampal neurons after transient forebrain ischemia. Overexpression of Bbc3/PUMA was sufficient to trigger apoptosis in SH-SY5Y neuroblastoma cells, and human cells deficient in Bbc3/PUMA showed dramatically reduced apoptosis in response to ER stress. Our data suggest that the transcriptional induction of Bbc3/PUMA may be sufficient and necessary for ER stress–induced apoptosis.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 337 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3