A LIGHT AND ELECTRON MICROSCOPE STUDY OF LONG-TERM ORGANIZED CULTURES OF RAT DORSAL ROOT GANGLIA

Author:

Bunge Mary Bartlett1,Bunge Richard P.1,Peterson Edith R.1,Murray Margaret R.1

Affiliation:

1. From the Departments of Anatomy and Surgery, Columbia University College of Physicians and Surgeons, New York

Abstract

Dorsal root ganglia from fetal rats were explanted on collagen-coated coverslips and carried in Maximow double-coverslip assemblies for periods up to 3 months. These cultured ganglia were studied in the living state, in stained whole mounts, and in sections after OsO4 fixation and Epon embedment. From the central cluster of nerve cell bodies, neurites emerge to form a rich network of fascicles which often reach the edge of the carrying coverslip. The neurons resemble their in vivo counterparts in nuclear and cytoplasmic content and organization; e.g., they appear as "light" or "dark" cells, depending on the amount of cytoplasmic neurofilaments. Satellite cells form a complete investment around the neuronal soma and are themselves everywhere covered by basement membrane. The neuron-satellite cell boundary is complicated by spinelike processes arising from the neuronal soma. Neuron size, myelinated fiber diameter, and internode length in the cultures do not reach the larger of the values known for ganglion and peripheral nerve in situ (30). Unmyelinated and myelinated nerve fibers and associated Schwann cells and endoneurial and perineurial components are organized into typical fascicles. The relationship of the Schwann cell and its single myelinated fiber or numerous unmyelinated fibers and the properties of myelin, such as lamellar spacing, mesaxons, Schmidt-Lanterman clefts, nodes of Ranvier, and protuberances, mimic the in vivo pattern. It is concluded that cultivation of fetal rat dorsal root ganglia by this technique fosters maturation and long-term maintenance of all the elements that comprise this cellular community in vivo (except vascular components) and, furthermore, allows these various components to relate faithfully to one another to produce an organotypic model of sensory ganglion tissue.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrastructure of dorsal root ganglia;Cell and Tissue Research;2023-04-20

2. Myelination dictates axonal viscoelasticity;European Journal of Neuroscience;2023-03-22

3. Models and methods to study Schwann cells;Journal of Anatomy;2022-01-05

4. Morphological and functional characteristics of satellite glial cells in the peripheral nervous system;Folia Morphologica;2021-12-02

5. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration;Frontiers in Cell and Developmental Biology;2021-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3