The calpactin light chain is tightly linked to the cytoskeletal form of calpactin I: studies using monoclonal antibodies to calpactin subunits.

Author:

Zokas L1,Glenney J R1

Affiliation:

1. Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, San Diego, California 92138.

Abstract

Calpactins are a family of related Ca++-regulated cytoskeletal proteins. To analyze the expression and cytoskeletal association of calpactins we raised monoclonal antibodies with specificity for the heavy or light chains of calpactin I or to calpactin II. Comparison of the tissue distribution of calpactin I heavy and light chains by Western blots revealed that these subunits are coordinately expressed. Both soluble and cytoskeletal forms of the heavy chain of calpactin I were detected in human fibroblasts whereas only a soluble pool of calpactin II was found. These two forms of the calpactin I heavy chain differed both in their state of association with the light chain and in their rate of turnover. Both the soluble pool of the calpactin I heavy chain and calpactin II turned over three to four times faster than the cytoskeletal pool of heavy and light chains. Immunofluorescence microscopy revealed that the calpactin I light chain was present exclusively in the cytoskeleton whereas the calpactin I heavy chain distribution was more diffuse. No difference in the amount of light chain or the cytoskeletal attachment of phosphorylated calpactin I heavy chain was found in Rous sarcoma virus-transformed chick embryo fibroblasts compared with their normal counterpart. The antibody to the light chain of calpactin I was microinjected into cultured fibroblasts and kidney epithelial cells. In many cases antibody clustering was observed with the concomitant aggregation of the associated calpactin I heavy chain. The distribution of fodrin and calpactin II in injected cells remained unchanged. These results are consistent with the existence of two functionally distinct pools of calpactin I which differ in their association with the cytoskeleton.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3