Thrombospondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains.

Author:

Taraboletti G1,Roberts D D1,Liotta L A1

Affiliation:

1. Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892.

Abstract

Thrombospondin induces the migration of human melanoma and carcinoma cells. Using a modified Boyden chamber assay, tumor cells migrated to a gradient of soluble thrombospondin (chemotaxis). Checkerboard analysis indicated that directional migration was induced 27-fold greater than stimulation of random motility. Tumor cells also migrated in a dose-dependent manner to a gradient of substratum-bound thrombospondin (haptotaxis). A series of human melanoma and carcinoma cells were compared for their relative motility stimulation by thrombospondin haptotaxis vs. chemotaxis. Some cell lines exhibited a stronger haptotactic response compared to their chemotactic response while other lines exhibited little or no migration response to thrombospondin. Human A2058 melanoma cells which exhibit a strong haptotactic and chemotactic response to thrombospondin were used to study the structural domains of thrombospondin required for the response. Monoclonal antibody C6.7, which binds to the COOH-terminal region of thrombospondin, inhibited haptotaxis in a dose-dependent optimal manner. C6.7 had no significant effect on thrombospondin chemotaxis. In contrast, monoclonal antibody A2.5, heparin, and fucoidan, which bind to the NH2-terminal heparin-binding domain of thrombospondin, inhibited thrombospondin chemotaxis but not haptotaxis. Monoclonal antibody A6.1 directed against the internal core region of thrombospondin had no significant effect on haptotaxis or chemotaxis. Synthetic peptides GRGDS (50 micrograms/ml), but not GRGES, blocked tumor cell haptotaxis on fibronectin, but had minimal effect on thrombospondin or laminin haptotaxis. The 140-kD fragment of thrombospondin lacking the heparin-binding amino-terminal region retained the property to fully mediate haptotaxis but not chemotaxis. When the COOH region of the 140-kD fragment, containing the C6.7-binding site, was cleaved off, the resulting 120-kD fragment (which retains the RGDA sequence) failed to induce haptotaxis. Separate structural domains of thrombospondin are therefore required for tumor cell haptotaxis vs. chemotaxis. This may have implications during hematogenous cancer metastases formation.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3