Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule.

Author:

He H T1,Finne J1,Goridis C1

Affiliation:

1. Centre d'Immunologie, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique de Marseille-Luminy, France.

Abstract

The neural cell adhesion molecule (N-CAM) of rodents comprises three distinct proteins of Mr 180,000, 140,000, and 120,000 (designated N-CAM-180, -140, and -120). They are expressed in different proportions by different tissues and cell types. but the individual contribution of each form to cell adhesion is presently unknown. Previous studies have shown that the two N-CAM species of higher relative molecular mass span the membrane whereas N-CAM-120 lacks a transmembrane domain and can be released from the cell surface by phosphatidylinositol-specific phospholipase C. In this report, we provided evidence that N-CAM-120 contained covalently bound phosphatidylinositol and studied N-CAM-120 from its biosynthesis to its membrane insertion and finally to its release from the cell surface. Evidence was presented showing that the lipid tail of N-CAM-120 contained ethanolamine as is the case for other lipid-linked molecules. The phospholipid anchor was attached to the protein during the first minutes after completion of the polypeptide chain. This process took place in the endoplasmic reticulum as judged from endoglycosidase H digestion experiments. Immediately after a 2-min pulse with [35S]methionine, we detected also a short-lived precursor that had not yet acquired the lipid tail. Pulse-chase studies established that N-CAM-120 was transported to the cell surface from which it was slowly released into the extracellular milieu. The molecules recovered in the incubation medium appeared to have lost all of their bound fatty acid but only around half of the ethanolamine. Upon fractionation of brain tissue, approximately 75% of N-CAM-120 was recovered with a membrane fraction and approximately 25% in a membrane-free supernatant. A small proportion (approximately 6%) was found to be resistant to extraction by non-ionic detergent. A major posttranslational modification of N-CAM is polysialylation. Our results showed that also N-CAM-120 was polysialylated in the young postnatal brain and released in this form from cultured cerebellar cells. The presence of N-CAM in a form that can be released from the cell surface and accumulates in the extracellular fluid suggests a novel mechanism by which N-CAM-mediated adhesion may be modulated.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3