Complete nucleotide sequence and deduced polypeptide sequence of a nonmuscle myosin heavy chain gene from Acanthamoeba: evidence of a hinge in the rodlike tail.

Author:

Hammer J A,Bowers B,Paterson B M,Korn E D

Abstract

We have completely sequenced a gene encoding the heavy chain of myosin II, a nonmuscle myosin from the soil ameba Acanthamoeba castellanii. The gene spans 6 kb, is split by three small introns, and encodes a 1,509-residue heavy chain polypeptide. The positions of the three introns are largely conserved relative to characterized vertebrate and invertebrate muscle myosin genes. The deduced myosin II globular head amino acid sequence shows a high degree of similarity with the globular head sequences of the rat embryonic skeletal muscle and nematode unc 54 muscle myosins. By contrast, there is no unique way to align the deduced myosin II rod amino acid sequence with the rod sequence of these muscle myosins. Nevertheless, the periodicities of hydrophobic and charged residues in the myosin II rod sequence, which dictate the coiled-coil structure of the rod and its associations within the myosin filament, are very similar to those of the muscle myosins. We conclude that this ameba nonmuscle myosin shares with the muscle myosins of vertebrates and invertebrates an ancestral heavy chain gene. The low level of direct sequence similarity between the rod sequences of myosin II and muscle myosins probably reflects a general tolerance for residue changes in the rod domain (as long as the periodicities of hydrophobic and charged residues are largely maintained), the relative evolutionary "ages" of these myosins, and specific differences between the filament properties of myosin II and muscle myosins. Finally, sequence analysis and electron microscopy reveal the presence within the myosin II rodlike tail of a well-defined hinge region where sharp bending can occur. We speculate that this hinge may play a key role in mediating the effect of heavy chain phosphorylation on enzymatic activity.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3