Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules.

Author:

von Zastrow M1,Castle J D1

Affiliation:

1. Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510.

Abstract

We have developed a method for separating purified parotid secretory granules according to their degree of maturation, and we have used this method to examine the relationship between granule formation and stimulus-independent (constitutive) protein secretion. Constitutive export of pulse-labeled secretory proteins occurs almost entirely after their appearance in newly formed granules, and this secretion can be resolved kinetically into two distinct components. Later-phase secretion is the more prominent component and, according to kinetic and compositional criteria, appears to result from basal exocytosis of mature granules. In contrast, early-phase secretion (1.5-15% of constitutive protein output) appears to originate from maturing granules but differs significantly from granule content in composition; that is, the early component exports individual protein species in different relative amounts. Maturing granules, which are labeled most highly before and during the appearance of early-phase secretion, possess numerous coated membrane evaginations suggestive of vesicular traffic. We propose that, in addition to basal exocytosis of relatively mature granules, constitutive exocrine secretion results from limited, selective removal of content proteins from forming and maturing granules. Thus protein sorting and packaging occur together in granule compartments. Exocrine secretory granules constitute an extension of the post-Golgi sorting system and are not merely terminal depots for proximally targeted polypeptides.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The secretory ability of newly formed secretory granules is regulated by pro-cathepsin B and amylase in parotid glands;Biochemical and Biophysical Research Communications;2023-07

2. Switching of cargo sorting from the constitutive to regulated secretory pathway by the addition of cystatin D sequence in salivary acinar cells;American Journal of Physiology-Gastrointestinal and Liver Physiology;2020-07-01

3. Saliva: An all-rounder of our body;European Journal of Pharmaceutics and Biopharmaceutics;2019-09

4. Kalirin/Trio Rho GDP/GTP exchange factors regulate proinsulin and insulin secretion;Journal of Molecular Endocrinology;2019-01

5. Structure-Function Relationships in the Pancreatic Acinar Cell;Physiology of the Gastrointestinal Tract;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3