Expression in Escherichia coli of a functional Dictyostelium myosin tail fragment.

Author:

De Lozanne A1,Berlot C H1,Leinwand L A1,Spudich J A1

Affiliation:

1. Department of Cell Biology, Stanford University School of Medicine, California 94305.

Abstract

The amino acid sequence of the myosin tail determines the specific manner in which myosin molecules are packed into the myosin filament, but the details of the molecular interactions are not known. Expression of genetically engineered myosin tail fragments would enable a study of the sequences important for myosin filament formation and its regulation. We report here the expression in Escherichia coli of a 1.5-kb fragment of the Dictyostelium myosin heavy chain gene coding for a 58-kD fragment of the myosin tail. The expressed protein (DdLMM-58) was purified to homogeneity from the soluble fraction of E. coli extracts. The expressed protein was found to be functional by the following criteria: (a) it appears in the electron microscope as a 74-nm-long rod, the predicted length for an alpha-helical coiled coil of 500 amino acids; (b) it assembles into filamentous structures that show the typical axial periodicity of 14 nm found in muscle myosin native filaments; (c) its assembly into filaments shows the same ionic strength dependence as Dictyostelium myosin; (d) it serves as a substrate for the Dictyostelium myosin heavy chain kinase which phosphorylates myosin in response to chemotactic signaling; (e) in its phosphorylated form it has the same phosphoamino acids and similar phosphopeptide maps to those of phosphorylated Dictyostelium myosin heavy chain; (f) it competes with myosin for the heavy chain kinase. Thus, all the information required for filament formation and phosphorylation is contained within this expressed protein.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3