Temperature-dependent reversible assembly of taxol-treated microtubules.

Author:

Collins C A1,Vallee R B1

Affiliation:

1. Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545.

Abstract

Taxol is a plant alkaloid that binds to and strongly stabilizes microtubules. Taxol-treated microtubules resist depolymerization under a variety of conditions that readily disassemble untreated microtubules. We report here that taxol-treated microtubules can be induced to disassemble by a combination of depolymerizating conditions. Reversible cycles of disassembly and reassembly were carried out using taxol-containing microtubules from calf brain and sea urchin eggs by shifting temperature in the presence of millimolar levels of Ca2+. Microtubules depolymerized completely, yielding dimers and ring-shaped oligomers as revealed by negative stain electron microscopy and Bio-Gel A-15m chromatography, and reassembled into well-formed microtubule polymer structures. Microtubule-associated proteins (MAPs), including species previously identified only by taxol-based purification such as MAP 1B and kinesin, were found to copurify with tubulin through reversible assembly cycles. To determine whether taxol remained bound to tubulin subunits, we subjected depolymerized taxol-treated microtubule protein to Sephadex G-25 chromatography, and the fractions were assayed for taxol content by reverse-phase HPLC. Taxol was found to be dissociated from the depolymerized microtubules. Protein treated in this way was found to be competent to reassemble, but now required conditions comparable with those for protein that had never been exposed to taxol. Thus, the binding of taxol to tubulin can be reversed. This has implications for the mechanism of taxol action and for the purification of microtubules from a wide variety of sources for use in self-assembly experiments.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3