Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation.

Author:

Eldridge C F,Bunge M B,Bunge R P,Wood P M

Abstract

Rat Schwann cells cultured with dorsal root ganglion neurons in a serum-free defined medium fail to ensheathe or myelinate axons or assemble basal laminae. Replacement of defined medium with medium that contains human placental serum (HPS) and chick embryo extract (EE) results in both basal lamina and myelin formation. In the present study, the individual effects of HPS and EE on basal lamina assembly and on myelin formation by Schwann cells cultured with neurons have been examined. Some batches of HPS were unable to promote myelin formation in the absence of EE, as assessed by quantitative evaluation of cultures stained with Sudan black; such HPS also failed to promote basal lamina assembly, as assessed by immunofluorescence using antibodies against laminin, type IV collagen, and heparan sulfate proteoglycan. The addition of EE or L-ascorbic acid with such HPS led to the formation of large quantities of myelin and to the assembly of basal laminae. Pretreatment of EE with ascorbic acid oxidase abolished the EE activity, whereas trypsin did not. Other batches of HPS were found to promote both basal lamina and myelin formation in the absence of either EE or ascorbic acid. Ascorbic acid oxidase treatment or dialysis of these batches of HPS abolished their ability to promote Schwann cell differentiation, whereas the subsequent addition of ascorbic acid restored that ability. Ascorbic acid in the absence of serum was relatively ineffective in promoting either basal lamina or myelin formation. Fetal bovine serum was as effective as HPS in allowing ascorbic acid (and several analogs but not other reducing agents) to manifest its ability to promote Schwann cell differentiation. We suggest that ascorbic acid promotes Schwann cell myelin formation by enabling the Schwann cell to assemble a basal lamina, which is required for complete differentiation.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 346 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3