Abstract
We have produced crystalline tubes of chicken breast myosin long subfragment-2 that show order to resolutions better than 2 nm. The tubes were formed from a thin sheet in which the myosin long subfragment-2 molecules were arranged on an approximately rectangular crystalline lattice with a = 14.1 +/- 0.2 nm and b = 3.9 +/- 0.1 nm in projection. Shadowing indicated that the tube wall was approximately 7 nm thick and that the sheets from which it was formed followed a right-handed helix. Superposition of the lattices from the top and bottom of the tube produced a moire pattern in negatively stained material, but images of single sheets were easily obtained by computer image processing. Although several molecules were superimposed perpendicular to the plane of the sheet, the modulation in density due to the coiled-coil envelope was clear, indicating that the coiled-coils in these molecules were in register (or staggered by an even number of quarter pitches). In projection the coiled-coil had an apparent pitch of 14.1 nm (the axial repeat of the unit cell), but the small number of molecules (probably four) superimposed perpendicular to the plane of the sheet meant that pitches within approximately 1 nm of this value could have shown a modulation. Therefore, a more precise determination of the coiled-coil pitch must await determination of the sheet's three-dimensional structure. The coiled-coils of adjacent molecules within the plane of the sheet were staggered by an odd number of quarter pitches. This arrangement was similar to that between paramyosin molecules in molluscan thick filaments and may have features in common with other coiled-coil protein assemblies, such as intermediate filaments. Each molecule in the crystal had two types of neighbor: one staggered by an odd number of quarter pitches and the other by an even number of quarter pitches, as has been proposed for the general packing of coiled-coils (Longley, W., 1975, J. Mol. Biol., 93:111-115). We propose a model for the detailed packing within the sheet whereby molecules are inclined slightly to the plane of the sheet so that its thickness is determined by the molecular length.
Publisher
Rockefeller University Press
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献