ISOLATION OF THE GOLGI APPARATUS FROM PLANT CELLS

Author:

Morré D. James1,Mollenhauer Hilton H.1

Affiliation:

1. From Lilly Hall of the Life Sciences, Department of Botany and Plant Pathology, Purdue University, Lafayette, Indiana, and the Electron Microscope Laboratory, The University of Texas, Austin, Texas

Abstract

A method for the isolation of the Golgi apparatus from stem tissues of onion is described. Preparations that consisted mainly of morphologically identifiable Golgi apparatus have been obtained. The best preparations were obtained from tissue homogenized under conditions of minimum shear, and in the presence of sucrose and certain additives which aid in preservation of the integrity of the Golgi membranes. Those additives, which had a pronounced stabilizing effect on the isolated apparatus, included both monovalent and divalent ions (sodium and calcium) and dextran. A large portion of the Golgi apparatus did not appear to change microscopic appearance upon isolation, but were observed to fuse into large aggregate structures not unlike those occurring naturally in certain animal or insect cells (12). Fusion occurred both at the edges of the cisternae and in register, but the integrity of the individual cisternae was not destroyed. The major contaminants of the Golgi apparatus fraction were numerous small and large spherical vesicles. At least some of these vesicles appeared to have been derived from the Golgi apparatus; others may have been fragments of the cell membrane, the endoplasmic reticulum, or other cell debris. By utilizing this procedure, it has been possible to obtain fractions of Golgi apparatus from plant tissues other than onion stem. However, at the present time it is only with onion that the Golgi apparatus has been isolated in a form that would warrant further purification for biochemical analysis.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3