The participation of annexin II (calpactin I) in calcium-evoked exocytosis requires protein kinase C.

Author:

Sarafian T1,Pradel L A1,Henry J P1,Aunis D1,Bader M F1

Affiliation:

1. Institut National de la Santé et de la Recherche Medicale Unité-338 de Biologie de la Communication Cellulaire, Strasbourg, France.

Abstract

Permeabilized adrenal chromaffin cells secrete catecholamines by exocytosis in response to micromolar calcium concentrations. Recently, we have demonstrated that chromaffin cells permeabilized with digitonin progressively lose their capacity to secrete due to the release of certain cytosolic proteins essential for exocytosis (Sarafian T., D. Aunis, and M. F. Bader. 1987. J. Biol. Chem. 34:16671-16676). Here we show that one of the released proteins is calpactin I, a calcium-dependent phospholipid-binding protein known to promote in vitro aggregation of chromaffin granules at physiological micromolar calcium levels. The addition of calpactin I into digitonin- or streptolysin-O-permeabilized chromaffin cells with reduced secretory capacity as a result of the leakage of cytosolic proteins partially restores the calcium-dependent secretory activity. This effect is specific of calpactin I since other annexins (p32, p37, p67) do not stimulate secretion at similar or higher concentrations. Calpactin I requires the presence of Mg-ATP, suggesting that a phosphorylating step may regulate the activity of calpactin. Calpactin is unable to restore the secretory activity in cells which have completely lost their cytosolic protein kinase C or in cells having their protein kinase C inhibited by sphingosine or downregulated by long-term incubation with TPA. In contrast, calpactin I prephosphorylated in vitro by purified protein kinase C is able to reconstitute secretion in cells depleted of their protein kinase C activity. This stimulatory effect is also observed with thiophosphorylated calpactin I which is resistant to cellular phosphatases or with phosphorylated calpactin I introduced into cells in the presence of microcystin, a phosphatase inhibitor. These results suggest that calpactin I is involved in the exocytotic machinery by a mechanism which requires phosphorylation by protein kinase C.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3