METABOLISM OF BILIRUBIN BY A CLONAL STRAIN OF RAT HEPATOMA CELLS

Author:

Rugstad Hans E.1,Robinson Stephen H.1,Yannoni Claudine1,Tashjian Armen H.1

Affiliation:

1. From the Pharmacology Department, Harvard School of Dental Medicine; the Department of Pharmacology, Harvard Medical School; and the Department of Medicine, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts 02115

Abstract

These studies demonstrate that the MH1C1 strain of rat hepatoma cells has the ability to take up and conjugate bilirubin and then excrete the conjugated pigment into the culture medium. On incubation with unconjugated bilirubin, the average rate of appearance of conjugated bilirubin in the medium was 4.4 ± 0.20 µg per mg of cell protein per hour (mean ± SE). The products formed from bilirubin by MH1C1 cells were chromatographically identical to those found in normal rat bile. Assay of bilirubin UDP glucuronyl transferase activity in homogenates of MH1C1 cells gave a value of 3.3 ± 0.50 µg of conjugated pigment formed per mg protein per hour, only moderately less than the enzyme activity of liver from normal rats. Rat fibroblasts in culture did not conjugate bilirubin, nor did they contain bilirubin UDP-glucuronyl transferase activity. As in living animals, flavaspidic acid inhibited bilirubin metabolism by MH1C1 cells, suggesting that the mechanism for bilirubin uptake is similar to that of normal liver. In contrast to the findings in animals, however, preincubation of MH1C1 cells with phenobarbital led to only minimal enhancement of pigment conjugation. MH1C1 cells represent the first example of a clonal strain of cells in culture in which many of the pathways of hepatic bilirubin metabolism remain intact. They should, therefore, serve as a useful model for studies of bile pigment metabolism which are not easily performed in the living animal.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3