Transient increase in calcium efflux accompanies fertilization in Chlamydomonas.

Author:

Bloodgood R A,Levin E N

Abstract

Mating in Chlamydomonas is a complex process initiated by contact of gametic flagellar surfaces, resulting in transmission of a signal from the flagella to the cell bodies. This signal triggers later events of cell wall loss, mating structure activation, and cell-cell fusion. Little is known about the nature of the signal or the role of Ca in these events. It was found that extracellular Ca is not necessary for successful mating in Chlamydomonas. However, cells will take up Ca from the medium in a linear manner for many hours and will accumulate micromolar concentrations, presumably by sequestering Ca within intracellular storage sites. If gametic cells of one mating type (preloaded with 45Ca) are mated with gametes of the opposite mating type (preloaded with unlabeled calcium), there is a rapid, transient increase in calcium efflux rate (20 times that of the control) that lasts approximately 6 min. This effect is not associated with cell-cell fusion, since the same observation is made if (+) gametes preloaded with 45-Ca are agglutinated by isolated flagella from (-) gametes preloaded with unlabeled Ca. Other experiments have shown that the increased efflux rate is not a simple consequence of cell wall release. Ca efflux in unmated gametes is greatly reduced in deflagellated cells, suggesting that much of the Ca movement is associated with the flagellar membrane. Although signaling itself may involve Ca fluxes across the flagellar membrane, it is also possible that a consequence of signaling is release of Ca from intracellular storage sites (perhaps functional equivalents of the sarcoplasmic reticulum). The observed transient increase in Ca efflux rate may reflect a transient increase in the cytoplasmic free-Ca concentration. This increase in cytoplasmic Ca may regulate the later events in mating (such as cell wall release and mating structure activation).

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3