Mechanism of the Facilitation of PC2 Maturation by 7B2: Involvement in ProPC2 Transport and Activation but Not Folding

Author:

Muller Laurent1,Zhu Xiaorong1,Lindberg Iris1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, Louisiana 70112

Abstract

Among the members of the prohormone convertase (PC) family, PC2 has a unique maturation pattern: it is retained in the ER for a comparatively long time and its propeptide is cleaved in the TGN/ secretory granules rather than in the ER. It is also unique by its association with the neuroendocrine protein 7B2. This interaction results in the facilitation of proPC2 maturation and in the production of activatable proPC2 from CHO cells. In the present study, we have investigated the mechanism of this interaction.ProPC2 binds 7B2 in the ER, but exits this compartment much more slowly than 7B2. We found that proPC2 was also slow to acquire the capacity to bind 7B2, whereas 7B2 could bind proPC2 rapidly after synthesis. This indicated that proPC2 folding was the limiting step in the formation of the complex. Indeed, sensitivity of native proPC2 to N-glycanase F digestion and inhibition of proPC2 folding supported the notion that 7B2 is not involved in the early steps of proPC2 folding, and that proPC2 must fold before binding 7B2. Under experimental conditions that prevent propeptide cleavage, 7B2 expression increased proPC2 transport to the Golgi. This increase exhibited the same kinetics as the facilitation of the removal of the propeptide. Finally, proPC2 activation could be reconstituted in Golgi- enriched subcellular fractions. In vitro, 7B2 was required for proPC2 activation at an acidic pH.Taken together, our results demonstrate that rather than promoting proPC2 folding, 7B2 acts as a helper protein involved in proPC2 transport and is required in the proPC2 activation process. We propose, therefore, that 7B2 stabilizes proPC2 in a conformation already competent for these two events.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3