Controlled conversion of an immortalized mesodermal progenitor cell towards osteogenic, chondrogenic, or adipogenic pathways.

Author:

Poliard A1,Nifuji A1,Lamblin D1,Plee E1,Forest C1,Kellermann O1

Affiliation:

1. Laboratoire de Différenciation Cellulaire, Institut Pasteur, Paris, France.

Abstract

The teratocarcinoma-derived C1 clone behaves as a mesodermal tripotential progenitor cell whose choice of fate, either osteoblast, chondroblast, or adipoblast, is strictly dependent on the spatial organization of the cells and the nature of the induction. In the absence of cell contact before the addition of inducers, the C1 cells maintain a stable undifferentiated phenotype while expressing potential regulators of embryonic mesodermal stem cell fate such a M-twist and Id1. Upon establishment of cell contacts before the induction of differentiation, the early genes characteristic of the three fates become expressed. In the presence of beta glycerophosphate and ascorbate, provided the cells have formed aggregates, 95% of the C1 cells mineralize with a kinetics of gene expression close to that of osteoblasts (Poliard, A., D. Lamblin, P. J. Marie, M. H. Buc, and O. Kellerman. 1993. J. Cell Sci. 106:503-512). With 10(-6)M dexamethasone, 80% of the same aggregates differentiate into foci of chondroblast-like cells. The kinetics of expression of the genes encoding type II, IX, X, and XI collagens, aggrecan and link protein during the conversion toward cartilage hypertrophy resembles that accompanying in vivo chondrogenesis. The synergistic action of dexamethasone and insulin convert most confluent C1 cells into functional adipocytes and induce a pattern of gene expression close to that reported for adipoblast cell lines. The C1 clone with its capacity to differentiate along three alternative pathways with high frequency, therefore appears as a valid in vitro model for deciphering the molecular basis of mesoblast ontogeny.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3