Mechanochemistry of protein 4.1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening.

Author:

Discher D E1,Winardi R1,Schischmanoff P O1,Parra M1,Conboy J G1,Mohandas N1

Affiliation:

1. Joint Graduate Group in Bioengineering, University of California, Berkeley 94143, USA.

Abstract

Mechanical strength of the red cell membrane is dependent on ternary interactions among the skeletal proteins, spectrin, actin, and protein 4.1. Protein 4.1's spectrin-actin-binding (SAB) domain is specified by an alternatively spliced exon encoding 21 amino acid (aa) and a constitutive exon encoding 59 aa. A series of truncated SAB peptides were engineered to define the sequences involved in spectrin-actin interactions, and also membrane strength. Analysis of in vitro supramolecular assemblies showed that gelation activity of SAB peptides correlates with their ability to recruit a critical amount of spectrin into the complex to cross-link actin filaments. Also, several SAB peptides appeared to exhibit a weak, cooperative actin-binding activity which mapped to the first 26 residues of the constitutive 59 aa. Fluorescence-imaged microdeformation was used to show SAB peptide integration into the elastic skeletal network of spectrin, actin, and protein 4.1. In situ membrane-binding and membrane-strengthening abilities of the SAB peptides correlated with their in vitro gelation activity. The findings imply that sites for strong spectrin binding include both the alternative 21-aa cassette and a conserved region near the middle of the 59 aa. However, it is shown that only weak SAB affinity is necessary for physiologically relevant action. Alternatively spliced exons can thus translate into strong modulation of specific protein interactions, economizing protein function in the cell without, in and of themselves, imparting unique function.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3