Selective reentry of recycling cell surface glycoproteins to the biosynthetic pathway in human hepatocarcinoma HepG2 cells.

Author:

Volz B1,Orberger G1,Porwoll S1,Hauri H P1,Tauber R1

Affiliation:

1. Institut für Klinische Chemie und Biochemie, Universitätsklinikum Rudolf-Virchow, Freie Universität Berlin, Germany.

Abstract

Return of cell surface glycoproteins to compartments of the secretory pathway has been examined in HepG2 cells comparing return to the trans-Golgi network (TGN), the trans/medial- and cis-Golgi. Transport to these sites was studied by example of the transferrin receptor (TfR) and the serine peptidase dipeptidylpeptidase IV (DPPIV) after labeling these proteins with the N-hydroxysulfosuccinimide ester of biotin on the cell surface. This experimental design allowed to distinguish between glycoproteins that return to these biosynthetic compartments from the cell surface and newly synthesized glycoproteins that pass these compartments during biosynthesis en route to the surface. Reentry to the TGN was measured in that surface glycoproteins were desialylated with neuraminidase and were monitored for resialylation during recycling. Return to the trans-Golgi was traced measuring the transfer of [3H]fucose residues to recycling surface proteins by fucosyltransferases. To study return to the cis-Golgi, surface proteins were metabolically labeled in the presence of the mannosidase I inhibitor deoxymannojirimycin (dMM). As a result surface proteins retained N-glycans of the oligomannosidic type. Return to the site of mannosidase I in the medial/cis-Golgi was measured monitoring conversion of these glycans to those of the complex type after washout of dMM. Our data demonstrate that DPPIV does return from the cell surface not only to the TGN, but also to the trans-Golgi thus linking the endocytic to the secretory pathway. In contrast, no reentry to sites of mannosidase I could be detected indicating that the early secretory pathway is not or is only at insignificant rates accessible to recycling DPPIV. In contrast to DPPIV, TfR was very efficiently sorted from endosomes to the cell surface and did not return to the TGN or to other biosynthetic compartments in detectable amounts, indicating that individual surface proteins are subject to different sorting mechanisms or sorting efficiencies during recycling.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3