Developmental regulation of membrane traffic organization during synaptogenesis in mouse diaphragm muscle.

Author:

Antony C1,Huchet M1,Changeux J P1,Cartaud J1

Affiliation:

1. Département de Biologie Supramoléculaire et Cellulaire, Institut Jacques-Monod, Paris, France.

Abstract

In innervated adult skeletal muscles, the Golgi apparatus (GA) displays a set of remarkable features in comparison with embryonic myotubes. We have previously shown by immunocytochemical techniques, that in adult innervated fibers, the GA is no longer associated with all the nuclei, but appears to be concentrated mostly in the subneural domain under the nerve endings in chick (Jasmin, B. J., J. Cartaud, M. Bornens, and J.-P. Changeux. 1989. Proc. Natl. Acad. Sci. USA. 86:7218-7222) and rat (Jasmin, B. J., C. Antony, J.-P. Changeux, and J. Cartaud. 1995. Eur. J. Neurosci. 7:470-479). In addition to such compartmentalization, biochemical modifications take place that suggest a functional specialization of the subsynaptic GA. Here, we focused on the developmental regulation of the membrane traffic organization during the early steps of synaptogenesis in mouse diaphragm muscle. We investigated by immunofluorescence microscopy on cryosections, the distribution of selected subcompartments of the exocytic pathway, and also of a representative endocytic subcompartment with respect to the junctional or extrajunctional domains of developing myofibers. We show that throughout development the RER, the intermediate compartment, and the prelysosomal compartment (mannose 6-phosphate receptor-rich compartment) are homogeneously distributed along the fibers, irrespective of the subneural or extrajunctional domains. In contrast, at embryonic day E17, thus 2-3 d after the onset of innervation, most GA markers become restricted to the subneural domain. Interestingly, some Golgi markers (e.g., alpha-mannosidase II, TGN 38, present in the embryonic myotubes) are no longer detected in the innervated fiber even in the subsynaptic GA. These data show that in innervated muscle fibers, the distal part of the biosynthetic pathway, i.e., the GA, is remodeled selectively shortly after the onset of innervation. As a consequence, in the innervated fiber, the GA exists both as an evenly distributed organelle with basic functions, and as a highly differentiated subsynaptic organelle ensuring maturation and targeting of synaptic proteins. Finally, in the adult, denervation of a hemidiaphragm causes a burst of reexpression of all Golgi markers in extrasynaptic domains of the fibers, hence showing that the particular organization of the secretory pathway is placed under nerve control.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3