Proenkephalin is a nuclear protein responsive to growth arrest and differentiation signals.

Author:

Böttger A1,Spruce B A1

Affiliation:

1. Department of Anatomy and Physiology, University of Dundee, United Kingdom.

Abstract

Neuropeptide precursors are traditionally viewed as molecules destined to be cleaved into bioactive peptides, which are then released from the cell to act on target cell surface receptors. In this report we demonstrate nuclear localization of the enkephalin precursor, proenkephalin, in rodent and human embryonic fibroblasts (Swiss 3T3 and MRC-5 cells) and in rodent myoblasts (C2C12 cells). Nuclear proenkephalin, detected by immunofluorescence with a panel of antiproenkephalin monoclonal antibodies, is distributed predominantly in three patterns. Selective abolition of these patterns with salt, nuclease, or methanol is associated with liberation of immunoprecipitable proenkephalin into the extraction supernatant. Proenkephalin antigenic domains, mapped using phage display libraries and synthetic peptides, are differentially revealed in the three distribution patterns. Selective epitope revelation may reflect different conformational forms of proenkephalin or its existence in complexes with other nuclear proteins, forms which therefore have different biochemical associations with the nuclear substructure. In fibroblast cell populations in transition to growth arrest, nuclear proenkephalin responds promptly to mitogen withdrawal and cell-cell contact by transient, virtually synchronous unmasking of multiple antigenic domains in a fine punctate distribution. A similar phenomenon is observed in myoblasts undergoing differentiation. The acknowledgment of growth arrest and differentiation signals by nuclear proenkephalin suggests its integration with transduction pathways mediating these signals. To begin to address the mechanism of nuclear targeting, we have transfected mutated and nonmutated proenkephalin into COS (African green monkey kidney) cells. Nonmutated proenkephalin is localized exclusively in the cytoplasm; however, proenkephalin mutated at the first ATG codon, or devoid of its signal peptide sequence, is targeted to the nucleus as well as to the cytoplasm. From this we speculate that nuclear proenkephalin arises from a primary translation product that lacks a signal peptide sequence because of initiation at a different site.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3