Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins

Author:

Medicherla Balasubrahmanyam1,Goldberg Alfred L.1

Affiliation:

1. Department of Cell Biology, Harvard Medical School, Boston, MA 02115

Abstract

Accumulation of misfolded oxidant-damaged proteins is characteristic of many diseases and aging. To understand how cells handle postsynthetically damaged proteins, we studied in Saccharomyces cerevisiae the effects on overall protein degradation of shifting from 30 to 38°C, exposure to reactive oxygen species generators (paraquat or cadmium), or lack of superoxide dismutases. Degradation rates of long-lived proteins (i.e., most cell proteins) were not affected by these insults, even when there was widespread oxidative damage to proteins. However, exposure to 38°C, paraquat, cadmium, or deletion of SOD1 enhanced two- to threefold the degradation of newly synthesized proteins. By 1 h after synthesis, their degradation was not affected by these treatments. Degradation of these damaged cytosolic proteins requires the ubiquitin–proteasome pathway, including the E2s UBC4/UBC5, proteasomal subunit RPN10, and the CDC48–UfD1–NPL4 complex. In yeast lacking these components, the nondegraded polypeptides accumulate as aggregates. Thus, many cytosolic proteins proceed through a prolonged “fragile period” during which they are sensitive to degradation induced by superoxide radicals or increased temperatures.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3