Cellular Mechanism of Myelination in the Central Nervous System

Author:

De Robertis Eduardo1,Gerschenfeld Hersch M.1,Wald Flora1

Affiliation:

1. From Instituto de Anatomía General y Embriología, Facultad de Ciencias Médicas, Buenos Aires, Argentina

Abstract

A study of myelination with electron microscopy has been carried out on the spinal cord of young rats and cats. In longitudinal and transverse sections the intimate relationship of the growing axons with the oligodendrocytes was observed. Early naked axons appear to be embedded within the cytoplasm and processes of the oligodendrocytes from which they are limited only by the intimately apposed membranes of both elements (axon-oligocytic membrane). In a transverse section several axons are observed to be in a single oligodendrocyte. The process of myelination consists in the laying down, within the cytoplasm of the oligodendrocyte and around the axon, of concentric membranous myelin layers. The first of these layers is deposited at a certain distance (200 to 600 A or more) from the axon-oligocytic membrane. This and all the other subsequently formed membranes have higher electron density and are apparently formed by the coalescence and fusion of vesicles (of 200 to 800 A) and membranes found in large amounts within the cytoplasm of the oligodendrocytes. At an early stage the myelin layers may be discontinuous and some vesicular material may even be trapped among them or between the myelin proper and the axon-oligocytic membrane. Then, when the 8th to 10th layer is deposited, the complete coalescence and alignment of the lamellae leads to the characteristic orderly multilayered organization of the myelin sheath. Myelination in the central nervous system appears to be a process of membrane synthesis within the cytoplasm of the oligodendrocyte and not a result of the wrapping of the plasma membranes as postulated in Geren's hypothesis for the peripheral nerve fibers. The possible participation of Schwann cell cytoplasm in peripheral myelination is now being investigated.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3