Author:
Mooseker M S,Graves T A,Wharton K A,Falco N,Howe C L
Abstract
The bundle of filaments within microvilli of intestinal epithelial cells contains five major proteins including actin, calmodulin, and subunits of 105-, 95-, and 70-kdaltons. It has been previously shown (Howe, C. L., M. S. Mooseker, and T. A. Graves. 1980. Brush-border calmodulin: a major component of the isolated microvillus core. J. Cell Biol. 85: 916-923) that the addition of Ca++ (> 10(-6) M) to microvillus cores causes a rapid, drastic, but at least partially reversible disruption of this actin filament bundle. High-speed centrifugation of microvillus cores treated with Ca++ indicates that several core proteins are solubilized, including 30-50% of the actin and calmodulin, along with much of the 95- and 70-kdalton subunits. Gel filtration of such Ca++ extracts in the presence and absence of Ca++ indicates that microvillar actin "solated" by Ca++ is in an oligomeric state probably complexed with the 95-kdalton subunit. Removal of Ca++ results in the reassembly of F-actin, probably still complexed with 95-kdalton subunit, as determined by gel filtration, cosedimentation, viscometry, and electron microscopy. The 95-kdalton subunit (95K) was purified from Ca++ extracts by DEAE-Sephadex chromatography and its interaction with actin characterized by viscometry, cosedimentation, and EM in the presence and absence of Ca++. In the presence, but not absence, of Ca++, 95K inhibits actin assembly (50% inhibition at 1:50-60 95K to actin) and also reduces the viscosity of F-actin solutions. Similarly, sedimentation of actin is inhibited by 95K, but a small, presumably oligomeric actin- 95K complex formed in the presence of Ca++ is pelletable after long-term centrifugation. In the absence of Ca++, 95K cosediments with F-actin. EM of 95K-actin mixtures reveals that 95K "breaks" actin into small, filamentous fragments in the presence of Ca++. Reassembly of filaments occurs once Ca++ is removed. In the absence of Ca++, 95K has no effect on filament structure and, at relatively high ratios (1:2-6) of 95K to actin, this core protein will aggregate actin filaments into bundles.
Publisher
Rockefeller University Press
Cited by
175 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献