Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization.

Author:

Myles D G,Primakoff P

Abstract

We have previously defined distinct localizations of antigens on the surface of the guinea pig sperm using monoclonal antibodies. In the present study we have demonstrated that these antigen localizations are dynamic and can be altered during changes in the functional state of the sperm. Before the sperm is capable of fertilizing the egg, it must undergo capacitation and an exocytic event, the acrosome reaction. Prior to capacitation, the antigen recognized by the monoclonal antibody, PT-1, was restricted to the posterior tail region (principle piece and end piece). After incubation in capacitating media at 37 degrees C for 1 h, 100% of the sperm population showed migration of the PT-1 antigen onto the anterior tail. This redistribution of surface antigen resulted from a migration of the surface molecules originally present on the posterior tail. It did not occur in the presence of metabolic poisons or when tail-beating was prevented. It was temperature-dependent, and did not require exogenous Ca2+. Since the PT-1 antigen is freely diffusing on the posterior tail before migration, the mechanism of redistribution could involve the alteration of a presumptive membrane barrier. In addition, we observed the redistribution of a second surface antigen after the acrosome reaction. The antigen recognized by the monoclonal antibody, PH-20, was localized exclusively in the posterior head region of acrosome-intact sperm. Within 7-10 min of induction of the acrosome reaction with Ca2+ and A23187, 90-100% of the acrosome-reacted sperm population no longer demonstrated binding of the PH-20 antibody on the posterior head, but showed binding instead on the inner acrosomal membrane. This redistribution of the PH-20 antigen also resulted from the migration of pre-existing surface molecules, but did not appear to require energy. The migration of PH-20 antigen was a selective process; other antigens localized to the posterior head region did not leave the posterior head after the acrosome reaction. These rearrangements of cell surface molecules may act to regulate cell surface function during fertilization.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3