The 27-kD diphtheria toxin receptor-associated protein (DRAP27) from vero cells is the monkey homologue of human CD9 antigen: expression of DRAP27 elevates the number of diphtheria toxin receptors on toxin-sensitive cells.

Author:

Mitamura T1,Iwamoto R1,Umata T1,Yomo T1,Urabe I1,Tsuneoka M1,Mekada E1

Affiliation:

1. Division of Cell Biology, Kurume University, Fukuoka, Japan.

Abstract

Diphtheria toxin (DT) receptor associates with a 27-kD membrane protein (DRAP27) in monkey Vero cells. A cDNA encoding DRAP27 was isolated, and its nucleotide sequence was determined. The deduced amino acid sequence revealed that DRAP27 is the monkey homologue of human CD9 antigen. DRAP27 is recognized by CD9 antibodies. A human-mouse hybrid cell line (3279-10) possessing human chromosome 5, sensitive to DT, but not expressing CD9 antigen, was used for transfection experiments with DRAP27. When the cloned cDNA encoding DRAP27 was transiently expressed in 3279-10 cells, the total DT binding capacity was three to four times higher than that of untransfected controls. Transfectants stably expressing DRAP27 have an increased number of DT binding sites on the cell surface. Furthermore, the transfectants are 3-25 times more sensitive to DT than untransfected cells, and the sensitivity of these cells to DT is correlated with the number of DRAP27 molecules on the surface. However, when the cloned cDNA was introduced into mouse cell lines that do not express DT receptors, neither an increased DT binding nor enhancement of DT sensitivity was observed. Hence, we conclude that DRAP27 itself does not bind DT, but serves to increase DT binding and consequently enhances DT sensitivity of cells that have DT receptors. 12 proteins related to DRAP27/CD9 antigen were found through homology search analysis. These proteins appear to belong to a new family of transmembrane proteins.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3