Protein targeting via the "constitutive-like" secretory pathway in isolated pancreatic islets: passive sorting in the immature granule compartment.

Author:

Kuliawat R1,Arvan P1

Affiliation:

1. Division of Endocrinology, Beth Israel Hospital, Harvard Medical School, Boston, Massachusetts 02215.

Abstract

We have suggested the existence of a novel "constitutive-like" secretory pathway in pancreatic islets, which preferentially conveys a fraction of newly synthesized C-peptide, insulin, and proinsulin, and is related to the presence of immature secretory granules (IGs). Regulated exocytosis of IGs results in an equimolar secretion of C-peptide and insulin; however an assay of the constitutive-like secretory pathway recently demonstrated that this route conveys newly synthesized C-peptide in molar excess of insulin (Arvan, P., R. Kuliawat, D. Prabakaran, A.-M. Zavacki, D. Elahi, S. Wang, and D. Pilkey. J. Biol. Chem. 266:14171-14174). We now use this assay to examine the kinetics of constitutive-like secretion. Though its duration is much shorter than the life of mature granules under physiologic conditions, constitutive-like secretion appears comparatively slow (t1/2 approximately equal to 1.5 h) compared with the rate of proinsulin traffic through the ER and Golgi stacks. We have examined whether this slow rate is coupled to the rate of IG exit from the trans-Golgi network (TGN). Escape from the 20 degrees C temperature block reveals a t1/2 less than or equal to 12 min from TGN exit to stimulated release of IGs; the time required for IG formation is too rapid to be rate limiting for constitutive-like secretion. Further, conditions are described in which constitutive-like secretion is blocked yet regulated discharge of IGs remains completely intact. Thus, constitutive-like secretion appears to represent an independent secretory pathway that is kinetically restricted to a specific granule maturation period. The data support a model in which passive sorting due to insulin crystallization results in enrichment of C-peptide in membrane vesicles that bud from IGs to initiate the constitutive-like secretory pathway.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3